QuIT Publication List

2024 Published

  1. Giovanni Francesco Diotallevi, Björn Annby-Andersson, Peter Samuelsson, Armin Tavakoli, and Pharnam Bakhshinezhad, Steady-state entanglement production in a quantum thermal machine with continuous feedback control, New J. Phys. 26 053005, arXiv:2309.07696 [quant-ph]

  2. Pharnam Bakhshinezhad, Mohammad Mehboudi, Carles Roch i Carceller, and Armin Tavakoli, Scalable entanglement certification via quantum communication, PRX Quantum 5, 020319, arXiv:2401.00796 [quant-ph]

  3. Patryk Lipka-Bartosik, Giovanni Francesco Diotallevi, and Pharnam Bakhshinezhad, Fundamental limits on anomalous energy flows in correlated quantum systems, Phys. Rev. Lett. 132, 140402, arXiv:2307.03828 [quant-ph]

  4. Nicky Kai Hong Li, Cornelia Spee, Martin Hebenstreit, Julio I de Vicente, Barbara Kraus, Identifying families of multipartite states with non-trivial local entanglement transformations, Quantum 8, 1270 (2024), arXiv:2302.03139 [quant-ph]

  5. Julius Arthur Bittermann, Lukas Bulla, Sebastian Ecker, Sebastian Philipp Neumann, Matthias Fink, Martin Bohmann, Nicolai Friis, Marcus Huber, and Rupert Ursin, Photonic entanglement during a zero-g flight, Quantum 8, 1256 (2024), arXiv:2303.13183 [quant-ph]

  6. Shuheng Liu, Matteo Fadel, Qiongyi He, Marcus Huber, and Giuseppe Vitagliano, Bounding entanglement dimensionality from the covariance matrix, Quantum 8, 1236 (2024), arXiv:2208.04909 [quant-ph]

  7. Pharnam Bakhshinezhad, Beniamin R. Jablonski, Felix C. Binder, and Nicolai Friis, Trade-offs between precision and fluctuations in charging finite-dimensional quantum batteries, Phys. Rev. E 109, 014131 (2023), arXiv:2303.16676 [quant-ph]

  8. Lucas B. Vieira, Simon Milz, Giuseppe Vitagliano and Costantino Budroni, Witnessing environment dimension through temporal correlations, Quantum 8, 1224 (2024), arXiv:2104.05663 [quant-ph]

2024 Preprint

  1. Shuheng Liu, Qiongyi He, Marcus Huber, Giuseppe Vitagliano, A nonlinear criterion for characterizing high-dimensional multipartite entanglement, arXiv:2405.03261 [quant-ph] (2024)

  2. Guilherme De Sousa, Pharnam Bakhshinezhad, Björn Annby-Andersson, Peter Samuelsson, Patrick P Potts, Christopher Jarzynski, Continuous feedback protocols for cooling and trapping a quantum harmonic oscillator, arXiv:2404.19047 [quant-ph] (2024)

  3. Philip Taranto, Patryk Lipka-Bartosik, Nayeli A. Rodríguez-Briones, Martí Perarnau-Llobet, Nicolai Friis, Marcus Huber, and Pharnam Bakhshinezhad, Efficiently Cooling Quantum Systems with Finite Resources: Insights from Thermodynamic Geometry, arXiv:2404.06649 [quant-ph] (2024)

  4. Sophie Engineer, Tom Rivlin, Sabine Wollmann, Mehul Malik, Maximilian P. E. Lock, Equilibration of objective observables in a dynamical model of quantum measurements, arXiv:2403.18016 [quant-ph] (2024)

  5. Tiago Debarba, Marcus Huber, and Nicolai Friis, Broadcasting Quantum Information Using Finite Resources, arXiv:2403.07660 [quant-ph] (2024)

  6. Florian Meier, Marcus Huber, Paul Erker and Jake Xuereb, Autonomous Quantum Processing Unit: What does it take to construct a self-contained model for quantum computation? arXiv:2402.00111 [quant-ph] (2024)

2024 Other

  1. Vincenzo De Maio, Meerzhan Kanatbekova, Felix Zilk, Nicolai Friis, Tobias Guggemos, and Ivona Brandic, Training Computer Scientists for the Challenges of Hybrid Quantum-Classical Computing, in: Proceedings of the 24th IEEE/ACM international Symposium on Cluster, Cloud and Internet Computing (CCGRID 2024), 6–9 May 2024, Philadelphia, USA, arXiv:2403.00885 [physics.ed-ph]

2023 Published

  1. Florian Meier, Emanuel Schwarzhans, Paul Erker, and Marcus Huber, Fundamental accuracy-resolution trade-off for timekeeping devices, Phys. Rev. Lett. 131, 220201 (2023), arXiv:2301.05173 [quant-ph]

  2. Jake Xuereb, Paul Erker, Florian Meier, Mark T. Mitchison, and Marcus Huber, The Impact of Imperfect Timekeeping on Quantum Control, Phys. Rev. Lett. 131, 160204 (2023), arXiv:2301.10767 [quant-ph]

  3. Xiaoqin Gao, Paul Appel, Nicolai Friis, Martin Ringbauer, and Marcus Huber, On the role of entanglement in qudit-based circuit compression, Quantum 7, 1141 (2023), arXiv:2209.14584 [quant-ph]

  4. Veronika Baumann, Classical information and collapse in Wigner's friend setups, Entropy 2023, 25(10), 1420 (2023)

  5. Shuheng Liu, Qiongyi He, Marcus Huber, Otfried Gühne and Giuseppe Vitagliano, Characterizing entanglement dimensionality from randomized measurements, PRX Quantum 4, 020324 (2023), arXiv:2211.09614 [quant-ph]

  6. Philip Taranto and Simon Milz, Hidden Quantum Memory: Is Memory There When Somebody Looks?, Quantum 7, 991 (2023), arXiv:2204.08298 [quant-ph]

  7. Giuseppe Vitagliano and Costantino Budroni, Leggett-Garg Macrorealism and temporal correlations, Phys. Rev. A 107, 040101 (2023), arXiv:2212.11616 [quant-ph]

  8. Lukas Bulla, Matej Pivoluska, Kristian Hjorth, Oskar Kohout, Jan Lang, Sebastian Ecker, Sebastian Philipp Neumann, Julius Bittermann, Robert Kindler, Marcus Huber, Martin Bohmann, and Rupert Ursin, Non-local temporal interferometry for highly resilient free-space quantum communication, Phys. Rev. X 13, 021001 (2023), arXiv:2204.07536 [quant-ph]

  9. Jan Sperling and Elizabeth Agudelo, Entanglement of particles versus entanglement of fields: independent quantum resources, Phys. Rev. A 107, 042420 (2023), arXiv:2204.06245 [quant-ph]

  10. Giuseppe Vitagliano, Matteo Fadel, Iagoba Apellaniz, Matthias Kleinmann, Bernd Lücke, Carsten Klempt, and Geza Toth, Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles, Quantum 7, 914 (2023), arXiv:2104.05663 [quant-ph]

  11. Philip Taranto, Faraj Bakhshinezhad, Andreas Bluhm, Ralph Silva, Nicolai Friis, Maximilian P. E. Lock, Giuseppe Vitagliano, Felix C. Binder, Tiago Debarba, Emanuel Schwarzhans, Fabien Clivaz, and Marcus Huber, Landauer vs. Nernst: What is the True Cost of Cooling a Quantum System? PRX Quantum 4, 010332 (2023), arXiv:2106.05151 [quant-ph]

  12. Jan Sperling, Ilaria Gianani, Marco Barbieri, and Elizabeth Agudelo, Detector entanglement: Quasidistributions for Bell-state measurements, Phys. Rev. A 107, 012426 (2023), arXiv:2209.06232 [quant-ph]

  13. Tamás Kriváchy, Krzysztof T Kaczmarek, Mikael Afzelius, Jean Etesse, and Géraldine Haack, Proposal for spin squeezing in rare-earth-ion-doped crystals with a four-color scheme, Phys. Rev. A 107, 013108 (2023), arXiv:2207.02169 [quant-ph]

2023 Other

  1. Reinhold A. Bertlmann and Nicolai Friis, Modern Quantum Theory - From Quantum Mechanics to Entanglement and Quantum Information, Oxford University Press, Oxford, U.K., 2023, ISBN: 9780199683338

2023 Preprint

  1. Klára Baksová, Olga Leskovjanová, Ladislav Mišta Jr., Elizabeth Agudelo, and Nicolai Friis, Multi-copy activation of genuine multipartite entanglement in continuous-variable systems, arXiv:2312.16570 [quant-ph] (2023)

  2. Jake Xuereb, Tiago Debarba, Marcus Huber, and Paul Erker, Quantum Coding with Finite Thermodynamic Resources, arxiv:2311.14561 [quant-ph] (2023)

  3. Y. Minoguchi, J. Huber, L. Garbe, A. Gambassi, P. Rabl, A Unified Interface Model for Dissipative Transport of Bosons and Fermions, arXiv:2311.10138 [cond-mat] (2023)

  4. Patryk Lipka-Bartosik, Giovanni Francesco Diotallevi, and Pharnam Bakhshinezhad, Fundamental limits on anomalous energy flows in correlated quantum systems, arXiv:2307.03828 [quant-ph] (2023)

  5. Jessica Bavaresco, Patryk Lipka-Bartosik, Pavel Sekatski, Mohammad Mehboudi Designing optimal protocols in Bayesian quantum parameter estimation with higher-order operations, arXiv:2311.01513 [quant-ph] (2023)

  6. Ricard Ravell Rodríguez, Mohammad Mehboudi, Michał Horodecki, Martí Perarnau-Llobet Strongly coupled fermionic probe for nonequilibrium thermometry, arXiv:2310.14655 [quant-ph] (2023)

  7. Giovanni Francesco Diotallevi, Björn Annby-Andersson, Peter Samuelsson, Armin Tavakoli, and Pharnam Bakhshinezhad, Steady-state entanglement production in a quantum thermal machine with continuous feedback control, arXiv:2309.07696 [quant-ph] (2023)

  8. Alexandra Bergmayr, Florian Kanitschar, Matej Pivoluska and Marcus Huber, How to harness high-dimensional entanglement, using limited interferometry setups, arXiv:2308.04422 [quant-ph] (2023)

  9. Julia Boeyens, Björn Annby-Andersson, Pharnam Bakhshinezhad, Géraldine Haack, Martí Perarnau-Llobet, Stefan Nimmrichter, Patrick P. Potts, Mohammad Mehboudi Probe thermometry with continuous measurements, arXiv:2307.13407 [quant-ph] (2023)

  10. Yanglin Hu, Maximilian P. E. Lock, Mischa P Woods, On the feasibility of detecting quantum delocalization effects on gravitational redshift in optical clocks, arXiv:2307.08938 [quant-ph] (2023)

  11. Allan Tosta, Antônio C Lourenço, Daniel Brod, Fernando Iemini, Tiago Debarba, Fermonic anyons: entanglement and quantum computation from a resource-theoretic perspective, arXiv:2306.00795 [quant-ph] (2023)

  12. Lucas B. Vieira, Simon Milz, Giuseppe Vitagliano and Costantino Budroni, Witnessing environment dimension through temporal correlations, arXiv:2305.19175 [quant-ph] (2023)

  13. Florian Meier, Hayata Yamasaki, Energy-consumption advantage of quantum computation, arXiv:2305.11212 [quant-ph] (2023)

  14. Alejandro Pozas-Kerstjens, Antoine Girardin, Tamás Kriváchy, Armin Tavakoli, Nicolas Gisin, Post-quantum nonlocality in the minimal triangle scenario, arXiv:2305.03745 [quant-ph] (2023)

  15. Faraj Bakhshinezhad, Beniamin R. Jablonski, Felix C. Binder, and Nicolai Friis, Trade-offs between precision and fluctuations in charging finite-dimensional quantum systems, arXiv:2303.16676 [quant-ph] (2023)

  16. Julius Arthur Bittermann, Lukas Bulla, Sebastian Ecker, Sebastian Philipp Neumann, Matthias Fink, Martin Bohmann, Nicolai Friis, Marcus Huber, and Rupert Ursin, Photonic entanglement during a zero-g flight, arXiv:2303.13183 [quant-ph] (2023)

  17. Emanuel Schwarzhans, Felix C. Binder, Marcus Huber, and Maximilian P. E. Lock, Quantum measurements and equilibration: the emergence of objective reality via entropy maximisation, arXiv:2302.11253 [quant-ph] (2023)

2022 Published

  1. Florian Meier and Lídia del Rio, Thermodynamic optimization of quantum algorithms: On-the-go erasure of qubit registers, Phys. Rev. A 106, 062426 (2022), arXiv:2112.04402 [quant-ph]

  2. Del Santo Flavio and Emanuel Schwarzhans, “Philosophysics” at the University of Vienna: The (Pre-)History of Foundations of Quantum Physics in the Viennese Cultural Context, Phys. Perspect. 24, 125-153 (2022), arXiv:2110.05217 [physics.hist-ph]

  3. Fattah Sakuldee, Philip Taranto, and Simon Milz, Connecting Commutativity and Classicality for Multi-Time Quantum Processes, Phys. Rev. A 106, 022416 (2022), arXiv:2204.11698 [quant-ph]

  4. Shiro Tamiya and Hayata Yamasaki, Stochastic gradient line Bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits, npj Quantum Inf. 8, 90 (2022) arXiv:2111.07952 [quant-ph]

  5. Mehul Malik, Elizabeth Agudelo, and Ravi Kunjwal, Quantum researcher mobility: the wonderful wizard of Oz who paid for Dorothy's Visa fees, Quantum Sci. Technol. 7, 034005 (2022) arXiv:2203.02371 [physics.soc-ph]

  6. Antoine Girardin, Nicolas Brunner, Tamás Kriváchy, Building separable approximations for quantum states via neural networks, Phys. Rev. Research 4, 023238 (2022), arXiv:2112.08055 [quant-ph]

  7. Simon Morelli, Hayata Yamasaki, Marcus Huber, and Armin Tavakoli, Entanglement Detection with Imprecise Measurements, Phys. Rev. Lett. 128, 250501 (2022), arXiv:2202.13131 [quant-ph]

  8. Simon Morelli, David Sauerwein, Michalis Skotiniotis, and Nicolai Friis, Metrology-assisted entanglement distribution in noisy quantum networks, Quantum 6, 722 (2022), arXiv:2110.15627 [quant-ph]

  9. Shadi Ali Ahmad, Thomas D. Galley, Philipp A. Höhn, Maximilian P. E. Lock, and Alexander R. H. Smith, Quantum relativity of subsystems, Phys. Rev. Lett. 128, 170401 (2022), arXiv:2103.01232 [quant-ph]

  10. Hayata Yamasaki, Simon Morelli, Markus Miethlinger, Jessica Bavaresco, Nicolai Friis, and Marcus Huber, Activation of genuine multipartite entanglement: beyond the single-copy paradigm of entanglement characterisation, Quantum 6, 695 (2022), arXiv:2106.01372 [quant-ph]

  11. Paolo Abiuso, Tamás Kriváchy, Emanuel-Cristian Boghiu, Marc-Olivier Renou, Alejandro Pozas-Kerstjens, and Antonio Acín, Single-photon nonlocality in quantum networks, Phys. Rev. Research 4, L012041 (2022), arXiv:2108.01726 [quant-ph]

2022 Preprint

  1. Giuseppe Vitagliano and Costantino Budroni, Leggett-Garg Macrorealism and temporal correlations, arXiv:2212.11616 [quant-ph] (2022)

  2. Shuheng Liu, Qiongyi He, Marcus Huber, Otfried Gühne and Giuseppe Vitagliano, Characterizing entanglement dimensionality from randomized measurements, arXiv:2211.09614 [quant-ph] (2022)

  3. Xiaoqin Gao, Paul Appel, Nicolai Friis, Martin Ringbauer, and Marcus Huber, On the role of entanglement in qudit-based circuit compression, arXiv:2209.14584 [quant-ph] (2022)

  4. Shuheng Liu, Matteo Fadel, Qiongyi He, Marcus Huber, and Giuseppe Vitagliano, Bounding entanglement dimensionality from the covariance matrix, arXiv:2208.04909 [quant-ph] (2022)

  5. Philip Taranto and Simon Milz, Hidden Quantum Memory: Is Memory There When Somebody Looks? arXiv:2204.08298 [quant-ph] (2022)

  6. Lukas Bulla, Matej Pivoluska, Kristian Hjorth, Oskar Kohout, Jan Lang, Sebastian Ecker, Sebastian Philipp Neumann, Julius Bittermann, Robert Kindler, Marcus Huber, Martin Bohmann, and Rupert Ursin, Non-local temporal interferometry for highly resilient free-space quantum communication, arXiv:2204.07536 [quant-ph] (2022)

  7. Jan Sperling and Elizabeth Agudelo, Entanglement of particles versus entanglement of fields: independent quantum resources, arXiv:2204.06245 [quant-ph] (2022)

  8. Hayata Yamasaki and Sathyawageeswar Subramanian, Constant-time one-shot testing of large-scale graph states, arXiv:2201.11127 [quant-ph] (2022)